There is something disquieting about Rawls' veil of ignorance position: participants are supposed to set aside their status, their attributes and even their personality in order to found this ideal society, whose first principle enshrines the liberty of conscience and freedom of speech. There may not be a logical contradiction between the two, but I think there is an obvious moral one.

# Blitiri

Soft matter physics, with an occasional side of literature, philosophy and unrelated topics

## 5 October 2014

## 4 October 2014

### A neural basis for readiness-to-hand ?

Researchers in Munich discovered that there is a specific network in the brain for using tools (the paper appeared in

Heidegger's concept of readiness-to-hand is arguably much more general than the motor skills involved in the use of familiar objects, but I like the idea of a neural basis for a philosophical concept.

*The Journal of Neuroscience*).Heidegger's concept of readiness-to-hand is arguably much more general than the motor skills involved in the use of familiar objects, but I like the idea of a neural basis for a philosophical concept.

Labels:
Heidegger,
publication,
science

## 3 October 2014

### Fête de la science 2014

Notre laboratoire se prépare pour la Fête de la science. Beaucoup d'activités sont prévues pour vendredi et dimanche (10 et 12 octobre), voir le programme. Pour des informations en temps réel suivre @LPS_Orsay.

Labels:
LPS,
science,
vulgarisation

## 25 September 2014

###
Solving tan(*x*) = *x*

**[UPDATE: 25/09/2014 with the iterative method]**This kind of transcendental equation is often encountered in physics. Undergraduate students are usually shown (or asked to draw) the graphical solution:

The numerical solutions are easily found by an iterative method using a scientific calculator (see below), but how far can one go with only pen and paper?

#### Expansion

Aside from the trivial solution \(x_0 = 0\), one clearly has \( x_k \simeq \frac{(2k +1) \pi}{2}\) (\(k \geq 1 \)), so we can write: \[ x_k = \frac{(2k +1) \pi}{2} - \varepsilon _k, \quad \mathrm{with} \quad \varepsilon _k < 1\] One would like to do an expansion in \( \varepsilon _k\), but of course this will not work for the tangent around its divergence points. We can however use the cotangent, since \( \tan (x_k) = x_k \Rightarrow \cot (x_k) = 1/x_k \). Using standard substitution formulas for the sine and cosine yields: \[\cot \left [ \frac{(2k +1) \pi}{2} - \varepsilon _k \right ] = \tan(\varepsilon _k) \simeq \varepsilon _k \simeq \frac{2}{(2k + 1) \pi}\] where in the last equality we neglected \( \varepsilon _k\) in the denominator. One can include it for a more rigorous treatment. Finally, we have: \[ x_k \simeq \frac{(2k +1) \pi}{2} - \frac{2}{(2k + 1) \pi}, \quad \mathrm{for} \quad k \geq 1 \, ,\] giving for the first three solutions 4.5002, 7.7267, and 10.9046, to be compared with the "exact" values 4.4934…, 7.7253…, and 10.9041…. The quality of the approximation increases with the order \(k\), since \(\varepsilon _k\) decreases (the intersections are closer and closer to the vertical asymptotes).#### Iteration

Let us rewrite the initial equation by applying the arctangent to both members:\[x = \arctan (x) \tag{1}\]

For the \(k\)-th solution, the initial estimate is: \( x^0_k = \frac{(2k +1) \pi}{2} \). Let us plug it in the right-hand side of Eq. (1) to obtain the first order estimate \( x^1_k\) and then iterate. Note that the arctangent is a multi-valued function, and the standard implementation reduces it to the first branch (the one going through the origin). We are looking for the solution sitting on the \(k\)-th branch, so we need to add \(k \pi\) each time:

\[x^{i+1}_k = \arctan (x^i_k) + k \pi \tag{2}\]

For the first non-trivial solution (\(k = 1\)), the sequence is: 4.71239, 4.50328, 4.49387, 4.49343, 4.49341,... with the second iteration already reaching an excellent precision!

Labels:
approximation,
equation,
solution,
tangent,
transcendental

## 18 September 2014

## 13 September 2014

### False false friends

Whoever had to evolve between two related languages is familiar with the concept of false friends.

I would argue that there is a less visible category of terms (or more precisely, of relations between terms) namely similar words that one feels are false friends but that actually have a similar meaning in the two languages: these are

*false false friends*(FFF).
This is a subjective relation, being a false perception of one speaker.

For me, when going from French (or Romanian) to English, the FFF are mainly terms of Latin origin for which I am tempted to substitute Saxon words or other Latin terms, but which have no immediate equivalent in Romance languages:

For me, when going from French (or Romanian) to English, the FFF are mainly terms of Latin origin for which I am tempted to substitute Saxon words or other Latin terms, but which have no immediate equivalent in Romance languages:

*salary*becomes*wages**merits*→*deserves**evident*→*obvious**hypothesis*→*assumption*

Labels:
false friends,
language,
translation

## 28 August 2014

### RIP, Jacques Friedel (1921-2014)

Jacques Friedel passed away yesterday. He was among the pioneers of the study of defects in solids and of the electronic structure of matter, one of the founders of my lab and my scientific great-grandfather.

## 25 August 2014

### The arbitrariness of words

(

Of course, such relations have been sought for —and found— ever since Plato (last year, I reviewed on this blog Genette's

Another interesting result is that more systematic words are acquired earlier. The authors speculate that systematicity helps language development in its early stages but might hinder it later, when (the vocabulary being larger) it can lead to confusion.

*via phys.org*) A statistical analysis of English terms, recently published in*Phil. Trans. R. Soc. B*(free preprint on the corresponding author's site), finds systematic relations between sound and meaning, refuting a pure arbitrariness of the linguistic sign.Of course, such relations have been sought for —and found— ever since Plato (last year, I reviewed on this blog Genette's

*Mimologics*, a great exploration of the topic.) The novelty is the quantitative aspect of the analysis: the authors define phonetic and semantic distances between pairs of terms and then measure the correlation of these distances, which is higher than expected by pure chance. Unfortunately, they give no intuitive illustration for the amplitude of the effect, expressed as an \(r\)-factor. So, finally,*how*systematic is the English language?Another interesting result is that more systematic words are acquired earlier. The authors speculate that systematicity helps language development in its early stages but might hinder it later, when (the vocabulary being larger) it can lead to confusion.

## 24 August 2014

### Moments of inertia of triangular prisms

Now that we have determined the moments of inertia of regular and truncated equilateral triangles, it is time to calculate them for the corresponding right prisms. These bodies, with mass density \(\rho\), can be seen as stacks of infinitesimally thin triangles of thickness \(\text{d}h\) and surface density \(\text{d} \mu = \rho \text{d}h\) (we preserve the notations from the previous posts and introduce the height of the stack, \(H\). The inertia moments of the prisms are denoted by \(P\), instead of \(I\).)

The centers of mass of these sheets are all situated on \(z\), so the total moment of inertia about this axis is simply the sum of the individual ones. We must simply replace \(\mu\) by \(\rho H\) in (1) and (3):

\[\begin{array}{ll}The centers of mass of these sheets are all situated on \(z\), so the total moment of inertia about this axis is simply the sum of the individual ones. We must simply replace \(\mu\) by \(\rho H\) in (1) and (3):

P_z(L,H) &= \rho H L^4 \frac{\sqrt{3}}{48}\\

P^{\text{tr}}_z(L,a,H) &= \rho H \frac{\sqrt{3}}{48} [L^4 - 3 a^4 - 12 a^2 (L-a)^2]

\end{array}\tag{5}\]

The derivation is slightly more complicated for axis \(y\), since we need to account for the variable distance between it and the centers of mass of the sheets (using, of course, the overworked parallel axis theorem!) Fortunately, we only need the integral \( \displaystyle \int_{-H/2}^{H/2} \text{d}h \, h^2 = \frac{H^3}{12}\) to get:

\[\begin{array}{ll}

P_y(L,H) &= \rho H L^4 \frac{\sqrt{3}}{96} \left [ 1 + 2 \left ( \frac{H}{L} \right )^2 \right ] \\

P^{\text{tr}}_y(L,a,H) &= \rho H \frac{\sqrt{3}}{96} \left [ L^4 - 3 a^4 - 12 a^2 (L-a)^2 + 2 H^2 (L^2 - 3 a^2) \right ]\\

&= \rho H L^4 \frac{\sqrt{3}}{96} \left [ 1 + 2 \left ( \frac{H}{L} \right )^2 - 12 x^2 \left ( (1-x)^2 + \frac{x^2}{4} + \frac{x^2}{2} \left ( \frac{H}{L} \right )^2 \right ) \right ]

\end{array}\tag{6}\]where \(x = a /L\).

## 23 August 2014

### Moment of inertia of a clipped triangle

After calculating the moment of inertia for an equilateral triangle, let us consider the same shape, but with clipped corners, as in the drawing below:

We will preserve the notations of the previous post, adding the superscript "tr" for the truncated shape: \(I_{z}^{\text{tr}} (L,a)\) is the moment about the \(z\) axis of the equilateral triangle with side \(L\), clipped by \(a\) at each corner (with \(a \leq L/2\)). We will also use the same strategy, writing the moments of the complete shape as a combination of its four fragments:

\[I_{z}(L) = I_{z}^{\text{tr}} (L,a) + 3[I_{z}(a)+m(a)d^2] ,\]

where \(d=(L-a)/\sqrt{3} .\) Using the results obtained for the full triangle immediately yields:

\[ I_{z}^{\text{tr}} (L,a) = \frac{\sqrt{3}}{48} \mu \left [ L^4 - 3a^4 - 12 a^2 (L-a)^2\right ] \tag{3}\]

Similarly, from:

\[I_{y}(L) = I_{y}^{\text{tr}} (L,a)+I_{y}(a) + 2[I_{y}(a)+m(a)(L-a)^2/4]\]

we get:

\[ I_{y}^{\text{tr}} (L,a) = \frac{\sqrt{3}}{96} \mu \left [ L^4 - 3a^4 - 12 a^2 (L-a)^2\right ] = I_{z}^{\text{tr}} (L,a)/2 \tag{4}\]

The clipped shape preserves the threefold symmetry of the original one, so the same conclusion as to the in-plane isotropy of the inertia tensor holds. Also, \( I_{z} = 2 I_{y}\) in both cases; I'm sure there is some elegant way to explain this, but I can't find it.

A quick check of results (3) and (4) is that \( I_{y,z}^{\text{tr}} (2L,L) = I_{y,z}(L) .\) In this case, one retrieves the situation shown in the illustration to the previous post.

Subscribe to:
Posts (Atom)